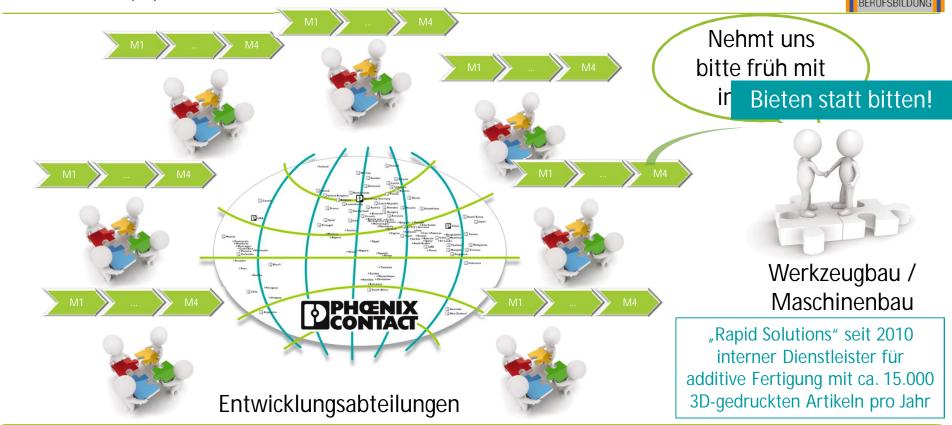


- Beginn der Additiven Fertigung bei Phoenix Contact
- Additive Fertigung in der industriellen Anwendung
- Digitale Geschäftsmodelle am Beispiel der PROTIQ GmbH
- Aus- und Weiterbildung von Morgen

- Beginn der Additiven Fertigung bei Phoenix Contact
- Additive Fertigung in der industriellen Anwendung
- Digitale Geschäftsmodelle am Beispiel der PROTIQ GmbH
- Aus- und Weiterbildung von Morgen

PHOENIX CONTACT

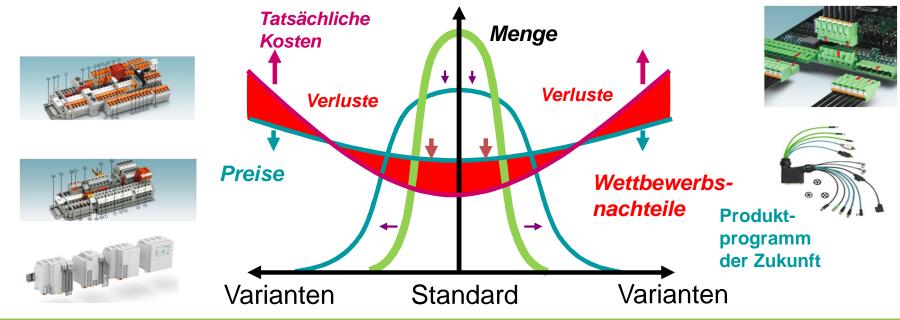

- Ca. 15.000 Mitarbeiter weltweit
- 14 Produktionsstandorte weltweit, Stammsitz: Blomberg
- Mehr als 50 Vertriebsstandorte weltweit
- Jahresumsatz 2016: ca.1,97 Mrd. €
- Ca. 60.000 aktive Produkte
- Ca. 2.500 Neuthetten pro san.
- Mehr als 50 Jahre Erfahrung im Werkzeugbau
- 190 Mitarbeiter im Werkzeugbau am Standort Blomberg
- ▶ 120 Mitarbeiter in den Werkzeugbaustandorten PL, CN, IN

WIESO 3D-DRUCK?

02.11.2017 | © PROTIQ GmbH – A Phoenix Contact Company | Johannes Lohn (M Sc.) / Dipl.-Ing. (FH) Clemens Boesen

WIESO 3D-DRUCK?

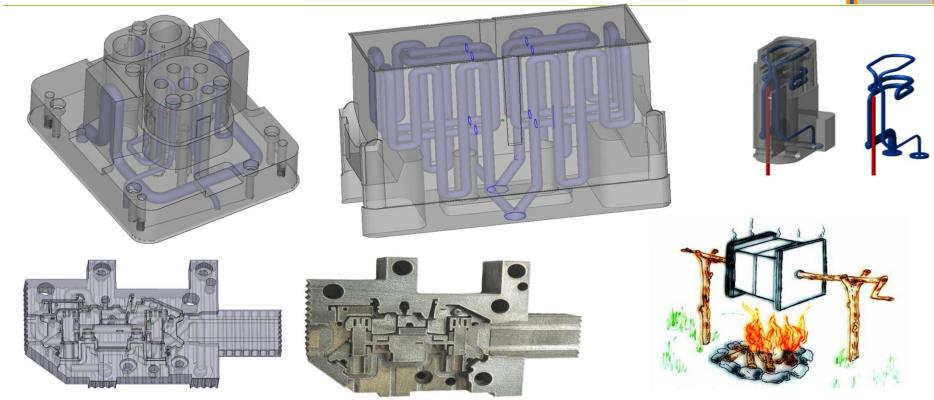
- Beratungsfunktion des Werkzeugbaus
 - Der Werkzeugbau als integraler Bestandteil des Produktentstehungsprozesses
 - Absicherung der Produktentwicklung
 - Absicherung der kunststoff- und werkzeuggerechten Konstruktion
- Marketingfunktion von Prototypen
- Total Cost of Ownership (TCO) Konzept
 - Reduzierung der Herstellkosten
- Direkte Herstellung von Funktionselementen
 - Werkzeug-, Maschinenbau
- Direkte Herstellung von Artikeln / Artikelkomponenten


Rapid Prototyping

> Direct Manufacturing

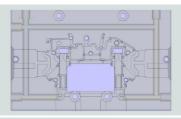
WANDEL IM MARKT

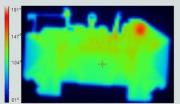
"Wir haben die Massenfertigung variantentauglich gemacht, jetzt müssen wir die Variantenfertigung serientauglich machen!"

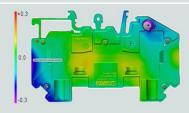


- Beginn der Additiven Fertigung bei Phoenix Contact
- Additive Fertigung in der industriellen Anwendung
- Digitale Geschäftsmodelle am Beispiel der PROTIQ GmbH
- Aus- und Weiterbildung von Morgen

TOTAL COST OF OWNERSHIP

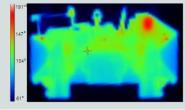

TOTAL COST OF OWNERSHIP

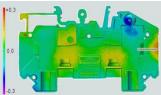



Konturnahe Kühlung im Spritzgießwerkzeug

Konventionelles Werkzeug mit 5 s Zykluszeit

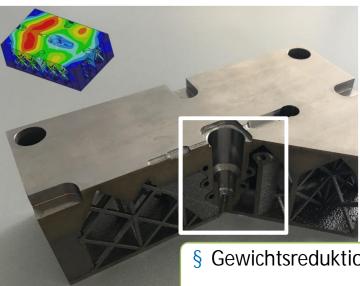
Konturnah temperiertes Werkzeug mit 3 s Zykluszeit




Werkzeugkonzept

Vergleichbares Ergebnis bei 40% Zykluszeitreduktion

Fehlerbild Maßabweichung



TOTAL COST OF OWNERSHIP

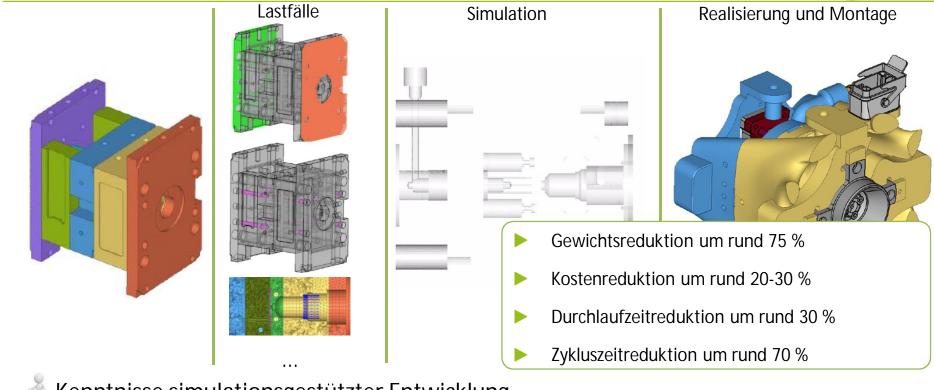
§ Gewichtsreduktion um rund 75 %

§ Zykluszeitreduktion Spritzgießen: 30 %

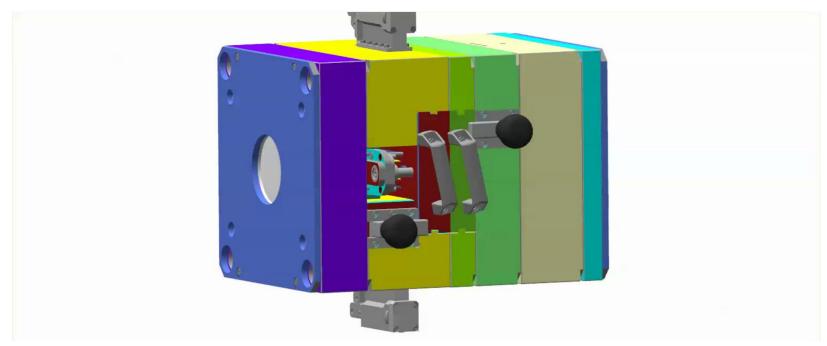
§ Dienstleistung – Globales Tool Shop Network

Konstruktive Möglichkeiten und Grenzen müssen bekannt sein

SIMULATIONSGESTÜTZE ENTWICKLUNG TOPOLOGIEOPTIMIERUNG

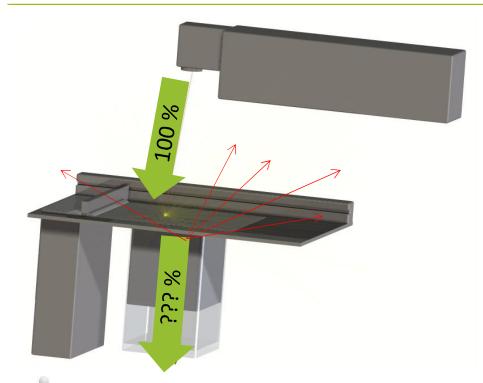


SIMULATIONSGESTÜTZE ENTWICKLUNG TOPOLOGIEOPTIMIERUNG



Kenntnisse simulationsgestützter Entwicklung

SIMULATIONSGESTÜTZE ENTWICKLUNG TOPOLOGIEOPTIMIERUNG



Δ

Umgang mit neuen Medien wie "Augmented Reality" und "Virtual Reality"

Herausforderung bei Kupferverarbeitung

- Kupferpulver reflektiert einen Großteil der Laserstrahlung (YAG: 1064 nm)
- Energieeintrag nicht effizient
- Gefahr der Rückreflektion und Zerstörung der Laserquelle

Lösungsansätze

- Modifikation der Legierung
- Einsatz von grünem/ blauem Laser
- Einsatz von speziellem Schutzglas

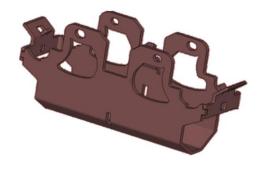
Prozess Know How für additive Fertigung

Ergebnis:

- Verarbeitung von Kupfer möglich
- Bauteildichte 99,5 %
- Die Materialspezifische Festigkeit/Härte wird nicht erreicht, da keine Verfestigung durch Verformung
- Thermische Nachbehandlung möglich

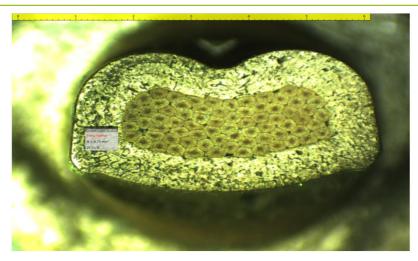
Parameterstudie:

- Variation Volumenenergie
 - Laserleistung
 - Scanspeed
 - Abstand der Fülllinien
- Variation Schichtdicke



Strombalken

- Materialstärke: 1,5 mm
- Konventionelle Lieferzeit ca. 3 Monate
- 3D Druck innerhalb von einer Woche



Zeitgetriebene Entwicklungszyklen für kurze Time-to-Market Sequenz

Crimpen

- gesinterter Kupferkontakt
- Querschnitt: 6 mm²
- Crimphöhe: 3,3 mm
- Auszugskraft gefordert min. 360 N
- Auszugskraft ermittelt 1017 N
- Verpressungsgrad i.O.
- Vercrimpung nicht gasfest

Umfassende Kenntnis verschiedenster Mess- und QM-Methoden

OPTIMIERTE INDUKTOREN ZUR WÄRMEBEHANDLUNG

Induktordesign und **Optimierung** - Flux, HyperStudy -

Prozessoptimierung - Flux -

3D Druckservice PROTIQ GmbH

Magnetfeldoptimierte Induktorgeometrie

Neue Geometrien Freiformen & Hinterschnitte Quelle: http://revistaih.com.br

Funktionsintegration Induktor und Abschreckbrause Quelle: ttp://www.solucoesindustriais.com.br

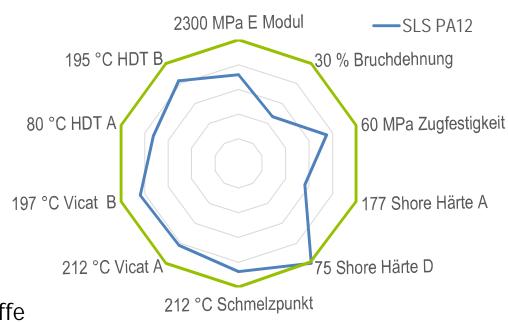
Übergreifende Kenntnis von Fertigungsverfahren

MATERIALQUALIFIZIERUNG TECHNISCHE KUNSTSTOFFE SLS

Entwicklung hochpräziser SLS Anlagentechnik ermöglicht Produktion mit PA6 (PA6.6, PBT, ...)

- Bauraum 200 x 250 x 300 mm
- Max. Vorheiztemperatur 350°C
- Verbesserte Temperaturregelung ΔT < 3 K</p>
- Variabler Laserspot 0,23 2 mm
- Eigene Slicing und Maschinensoftware
- Prozessüberwachung über Thermokamera
- Innovativer Pulverauftrag
- Schutzgasamtmosphäre < 0,1% O2</p>

Δ


Grundlagen Maschinen- und Anlagenbau

MATERIALQUALIFIZIERUNG TECHNISCHE KUNSTSTOFFE SLS

	SLS PA12	SLS PA6X
E Modul	1650 MPa	2300 MPa
Bruchdehnung	14 %	30 %
Zugfestigkeit	45 MPa	58 MPa
Shore Härte A / D	100 / 76	177 / 75
Schmelzpunkt	186 °C	212 °C
Vicat Erweichung A / B	174 / 165 °C	212 / 197 °C
HDT A / B	58 / 161 °C	80 / 195 °C
Wasseraufnahme	1,4 Gewichts- %	2,9 Gewichts-%
Minimale Wanddicke	0,4 mm	0,3 mm

Werkstoffkunde technischer Kunststoffe

- Additive Fertigung in der Phoenix Contact Gruppe
- Additive Fertigung in der industriellen Anwendung
- Digitale Geschäftsmodelle am Beispiel der PROTIQ GmbH
- Aus- und Weiterbildung von Morgen

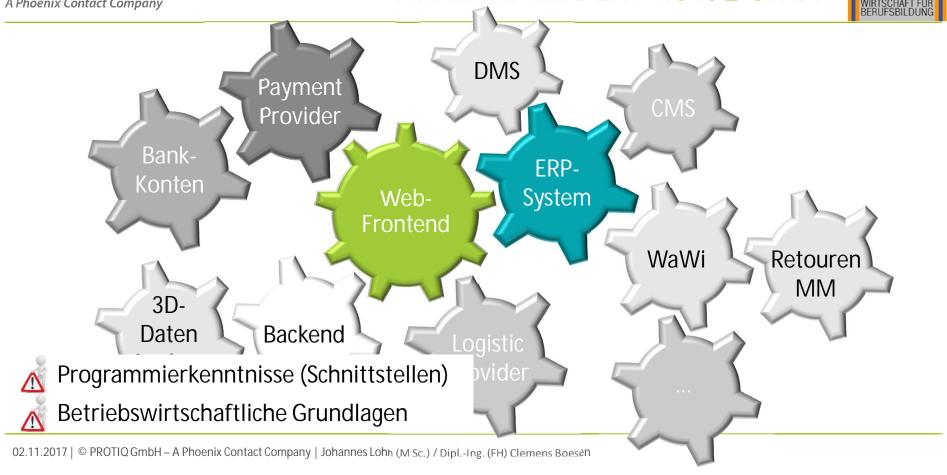
DIGITALE GESCHÄFTSMODELLE AM BEISPIEL DER PROTIQ GMBH

3D-Druck von PROTIQ. Präzise. Schnell. Zuverlässig.

- PROTIQ wurde am 15. September 2016 gegründet
- PROTIQ ist ein Webportal, über das Nutzer 3D-Modelle hochladen und konfigurieren können.
 Wir stellen die gewünschten Objekte mit hoher Präzision her und versenden sie weltweit – schnell.
- PROTIQ bietet die Expertise in additiver Fertigung seit 2010 für die Phoenix Contact Gruppe als interne Einheit unter dem Namen "Rapid Solutions" an

DIGITALE GESCHÄFTSMODELLE AM BEISPIEL DER PROTIQ GMBH

3D-Druck von PROTIQ. Präzise. Schnell. Zuverlässig.



www.protig.com

DIGITALE GESCHÄFTSMODELLE AM BEISPIEL DER PROTIQ GMBH

ANWENDUNGSBEREICHE

- Funktionsprototypen, Muster und Serienteile aus technischen Kunststoffen
- ► Hochpräzise Kunststoffprototypen und Urmodelle für Gießverfahren
- Multimaterial-Bauteile mit gummielastischen und harten Bereichen
- 3D-gedruckte Spritzgießwerkzeugeinsätze aus Kunststoff, Aluminium, Kupfer und Stahl
- Metallische Bauteile jeglicher Art mit der Qualifizierungs-möglichkeit von neuartigen Metallwerkstoffen (Kupfer, Zink, Messing, ...)

Neue Werkstoffe

BEGLEITENDE LEISTUNGEN

- Oberflächenveredlung (Finishing)
 - Strahlen, Schleifen, Polieren,
 - Fräsen und Erodieren
 - ► Lackieren und Infiltrieren (Tauchen)
- Montage (Zusammenbau)
- Reverse Engineering (Computer Tomographie)
- 3D-Druck Schulungen
- Beratung und persönlicher Service für Kunden
- Topologieoptimierungen

Neue Messtechnik und Software (Simulation etc.)

Englischkenntnisse (B1-Level) für Softwarebedienung

- Beginn der Additiven Fertigung bei Phoenix Contact
- Additive Fertigung in der industriellen Anwendung
- Digitalisierte Geschäftsprozesse am Beispiel der PROTIQ GmbH
- Aus- und Weiterbildung von Morgen

AUS- UND WEITERBILDUNG VON MORGEN

Status Heute (fett):

Bedienung von AM-Anlagentechnik (3D-Druck)

durch überqualifiziertes Personal

Anforderung an die Ausbildung:

Ausbildungsberuf

 ${\it ``Verfahrensmechaniker''}$

Additive Fertigung"

Dr.

Master,

Ingenieur

Bachelor,

Meister, Techniker

Kurzstudiengang,

Spezialist

3-jährige Berufsausbildung

2-jährige Berufsausbildung

Einstiegsqualifizierung, Berufsschule

Berufsausbildungsvorbereitung

AUS- UND WEITERBILDUNG VON MORGEN

Erforderliche Lerninhalte für Ausbildungsberuf "Verfahrensmechaniker Additive Fertigung"

- "EDV-Kenntnisse (Office, Email, CAD-Programme, Grundlagen Programmierung)
- 3D Konstruktion lesen, begreifen, vermessen, modifizieren
- Automatisierungstechnik
- Messtechnik (3D Scan, CT-Scan, Taktile Messung, ...)
- Pulvermaterialien (Lagern, Sieben, Prüfen)
- Arbeitssicherheit (Pulvermaterialien, Schutzgase, ...)
- Qualitätssicherung
 (Endkontrolle bei Stückzahl 1 nach Anforderung in CAD-System eigenständig durchführen)
- Fremdsprache Englisch Level (min. B1)
- Neue Medien. Augmented Reality, Virtual Reality
- "Selbst-lernen" lernen, lebenslanges lernen, kontinuierliche Weiterbildungsmaßnahmen nach Abschluss der Ausbildung

